Dielectric function, screening, and plasmons in two-dimensional graphene
نویسندگان
چکیده
منابع مشابه
Dielectric screening and plasmons in AA-stacked bilayer graphene
The screening properties and collective excitations (plasmons) in AA-stacked bilayer graphene are studied within the random phase approximation. Whereas long-lived plasmons in single-layer graphene and in AB-stacked bilayer graphene can exist only in doped samples, we find that coherent plasmons can disperse in AA-stacked bilayer graphene even in the absence of doping. Moreover, we show that th...
متن کاملTerahertz and mid-infrared plasmons in three-dimensional nanoporous graphene
Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this mat...
متن کاملPlasmons in Waveguide Structures Formed by Two Graphene Layers
535 Much attention has been attracted in recent years to graphene, a material made up of a twoodimensional latt tice of carbon atoms [1–4]. From the fundamental point of view, graphene is interesting because charge carriers in this material are characterized by a linear diss persion relation, which leads to such phenomena as the roomtemperature quantum Hall effect [5] and the existence of a non...
متن کاملLow-dimensional gap plasmons for enhanced light-graphene interactions
Graphene plasmonics has become a highlighted research area due to the outstanding properties of deep-subwavelength plasmon excitation, long relaxation time, and electro-optical tunability. Although the giant conductivity of a graphene layer enables the low-dimensional confinement of light, the atomic scale of the layer thickness is severely mismatched with optical mode sizes, which impedes the ...
متن کاملEdge plasmons in graphene nanostructures
Plasmon modes in graphene are influenced by the unusual dispersion relation of the material. For bulk plasmons this results in a n1/4 dependence of the plasma frequency on the charge density, as opposed to the n1/2 dependence in two-dimensional electron gas (2DEG); yet, bulk plasmon dispersion in graphene follows a similar q1/2 behavior as for other two-dimensional materials. In this work we co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.75.205418